Editions Nathan 2019 – Photocopie non autorisé

6 Algo Utiliser un algorithme

Modéliser Calculer

Cet algorithme s'inspire de la méthode utilisée par Héron d'Alexandrie au ler siècle après J.-C. pour obtenir une valeur approchée de $\sqrt{2}$.

Saisir k $a \leftarrow 2$ b ← 1 Pour i allant de 1 à k $a \leftarrow \frac{a+b}{a+b}$ Fin Pour Afficher a

a. Compléter ce tableau pour déterminer la valeur affichée par l'algorithme si l'on saisit 2 en entrée.

	Calculs de la valeur exacte de <i>a</i>	Valeur exacte ou approchée de <i>a</i>
<i>i</i> = 1	$a = \frac{2+1}{2} = \frac{3}{2}$ $b = \frac{2}{3} = 2 \times \frac{2}{3} = \frac{4}{3}$	ca arnada ya ka 244 - 24 ta 11,5 - 54 aus - 1,5 - 5
i = 2	$a = \frac{\frac{3}{2} + \frac{4}{3}}{2} = \frac{\frac{17}{6}}{\frac{2}{2}} = \frac{17}{12}$ $b = \frac{2}{\frac{17}{12}} = 2 \times \frac{12}{17} = \frac{24}{17}$	1,416 666 6

b. Coder cet algorithme en langage Python. Saisir le programme et l'exécuter avec k = 5.

7 Étudier une réunion

Chercher Représenter

1. a. Représenter sur la droite graduée les deux intervalles $I =]-\infty$; 2[et J = [-3; 4].

b. Quel est l'ensemble K des nombres réels qui appartiennent à I ou à J? $K =]-\infty$; 4].....

L'ensemble des nombres réels qui appartiennent à un intervalle I ou un intervalle J est la réunion des intervalles I et J; on la note $I \cup J$.

2. Déterminer la réunion K des deux intervalles.

c.
$$I =]-\infty; -2]$$
 et $J =]-6; +\infty[$ K.=. \mathbb{R}

8 Étudier une intersection

Chercher Représenter

1. a. Représenter sur la droite graduée les deux intervalles I =]-1; 4[et J = [-3; 2].

b. Quel est l'ensemble K des nombres réels qui appartiennent à la fois à I et à J? K = [-1; 2]

On dit que K est **l'intersection** de I et J; on note $K = I \cap J$.

- 2. Déterminer l'intersection K des deux intervalles.
- **a.** I = [-8; 5] et J = [3; 9].
- **b.** I = [-2; 4] et $J = [4; +\infty[$.
- **c.** $I = [-5; +\infty[\text{ et J} =]-\infty; -3[.$
 - **a.** K = [3; 5]
 - **b.** $K = \emptyset$
 - **c.** K = [-5; -3]

Passer d'une inégalité à un intervalle

Chercher Calculer

Traduire en utilisant des intervalles.

- **a.** x < 2 ou x > 8
- **b.** $x \le -6$ ou x > 0

c. |x| < 3

- **d.** |x| > 3
- **e.** |x-6| > 2
- **f.** $|x + 7| \le 3$
- **a.** *x* ∈ $]-\infty$; 2[\cup]8; + ∞ [**b.** $x \in]-\infty; -6] \cup]0; +\infty[$
- **c.** $x \in]-3;3[$
- **d.** *x* ∈]−∞; −3[\cup]3; +∞[
- **e.** *x* ∈] − ∞; 4[∪]8; + ∞[
- **f.** $x \in [-10; -4]$

10 Respecter des contraintes

Chercher Calculer

Un fabricant désire produire des écrans dont l'épaisseur e, en cm, respectera à la fois la norme européenne et la norme américaine.

Norme européenne: $|e - 0.68| \le 10^{-2}$. Norme américaine : $|e-0.7| \le 0.02$.

Traduire avec la notation valeur absolue, la norme que devra respecter ce fabricant.

• $|e - 0.68| \le 10^{-2}$ se traduit par $e \in [0,68 - 10^{-2}; 0,68 + 10^{-2}]$ c'est-à-dire $e \in [0,67;0,69]$. • $|e - 0.7| \le 0.02$ se traduit par $e \in [0,68;0,72]$. • $[0,67;0,69] \cap [0,68;0,72] = [0,68;0,69].$ $e \in [0,68; 0,69]$ donc la norme du fabricant sera définie par $|e - 0.685| \le 0.005$.